Thursday, February 11, 2016

The wait is over

Did you feel anything odd at around 09.50am GMT on 14th September 2015 (I'll let you do the time zone conversion)? Did you notice a disturbance in the force? Did you feel a tingle down your spine? Did you have butterflies in your stomach? Or, did you just feel a little bit wibbly?

No!? Well, at around that time a gravitational wave slammed into you at the speed of light, tried to rip your component atoms apart and then pull them together again1, and then passed out the other side of you. But you didn't even notice, did you! It's not particularly surprising you didn't feel anything as the disturbance the wave produced was spectacular mainly in its minuscule effect - the waves would have attempted1 to 'wibble' you from head-to-toe by only about 0.000000000000000000001 m (see Fig. 1 for an illustration of the effects of such a wave!).

Fig. 1. The effect of a passing gravitational wave on an alligator (as found around the LIGO Livingston observatory), a tumbleweed (as found in plentiful supply around the LIGO Hanford observatory) and myself (as found in the School of Physics & Astronomy at the University of Glasgow). Note that there is no discernible effect on any of these, except maybe as slight noticeable increase in my happiness at the prospect of the last 13 years of my working life having not been futile!
However, we (humanity in general, but large teams of scientists - many within the LIGO Scientific Collaboration [LSC] and Virgo Collaboration, including me - more specifically) have managed to build instruments that did indeed feel something on this date and time - a signal which we've given the catchy name GW150914 (or "The Event" as it was known for a while within the collaboration). These instruments, in this case the two US-based LIGO observatories (now entering their advanced phase), one in Hanford, Washington and the other in Livingston, Louisiana2, both felt the waves' passing and saw a very consistent signal (see Fig. 2) - other than it looking like exactly what we'd expect from a gravitational wave source, our confidence that this was a real signal came from empirically estimating how often such a consistent and strong signal would have be seen by chance (i.e., from random [generally non-Gaussian] noise fluctuations in the detectors), which we work out as being less than once per 200,000 years. So, we're pretty sure (greater than 5.1σ in annoyingly frequentist statistical terminology), i.e. certain, that the signal was real. And, what's more, we've been able to use the pattern of wibbles the instruments felt to work out that this gravitational wave was emitted by two black holes, both tens of times more massive than the Sun, whacking into each other at about half the speed of light, to form the largest small(!) (~solar mass) black hole we know of. The amount of energy this event emitted was a whopping 5×1047 Joules (quite possibly the most luminous event we've ever observed), equivalent to three times the mass of the Sun being converted directly to energy (remember E=mc2). Or, if you're into some "fun" energy conversions this is apparently equivalent to "the number of kilocalories in 2×1028 cubic kilometres of butter (that's the volume of 14 billion Suns of pure butter!)" or "3 quadrillion times the energy required to destroy the planet Earth"!

Fig. 2. The GW150914 gravitational wave signal observed in the two LIGO detectors (this is figure 1 from the discovery paper, Abbott et al., Phys. Rev. Lett., 116, 061102 (2016)) (Credit: The LIGO Scientific Collaboration and the Virgo Collaboration)
This is the first ever detection3 we've had and it is quite a big deal, both scientifically (there's a whole load of awesome astrophysics that has been done using the signal, and it opens up a whole new area of astronomy) and personally. Some people have been in the gravitational wave detection game for almost five decades, but we've all had to wait patiently without seeing any definite sign of them in our detectors4 (this has occasionally been to the amusement of colleagues in other areas of physics and astronomy). As a member of the LSC myself since starting studying for my PhD at the University of Glasgow in the autumn of 2002 (when what is now known as the "initial" LIGO detectors had just started taking data) I've only been waiting 13 years, but that's still my entire working life. For some additional context here's what I wrote in my thesis acknowledgements section back in 2005:
I was attracted to the field of gravitational wave research due to the promise that we would be entering exciting times with several large scale projects bringing in unprecedented amounts of new data. Given this the discovery of gravitational waves would be just round the corner, opening up gravitational wave astronomy for real. Little did I know that this has been exactly what’s been said for around 30 years! Despite this I do actually believe that I’ve entered the field at a prime time and finding gravitational waves is just around, if not the first corner, then the next one.
So, ten years later, we have now turned that "next corner" and gravitational wave astronomy is finally with us! Many more detections should now be forthcoming in our future observation runs, hopefully including other exciting sources as well as more merging pairs of black holes.

Finally, the other rather cool, and timely, thing is that the signal arrived a century after Einstein published his General Theory of Relativity from which the prediction of gravitational waves arises. Einstein's prediction of gravitational waves and also Schwarzschild's solution to Einstein's equations from which predictions of black holes would arise, were both published a century ago in 1916.

The paper describing the detection and analysis of GW150914 has been peer reviewed and is now published (Abbott et al, Phys. Rev. Lett., 116, 061102, 2016) and further papers detailing the detectors, analyses and science results can be found here. Also, summaries (at a less detailed level) of the main science we've obtained from the signal can be found here. The data containing the signal and some example codes showing how to view, and hear(!), it are available here, so you should go ahead and take a look yourself.

More information, reactions and opinions about this amazing discovery (and the time-line of how the detection happened5) can be found in blog posts by several fellow collaboration members linked below and within a special edition of the LIGO Magazine:
Also, be sure follow @ligo and @ego_virgo on twitter along with the hastags #GravitationalWaves, #EinsteinWasRight, #BinaryBlackHole and #AdvancedLIGO.

P.S. If you want to know what I was doing when GW150914 passed by it probably involved nappies (diapers for those in the US), feeding a child/cleaning bottles, or doing laundry, as I was on the final day of paternity leave following the birth of my second child (here's my first child one simulating a gravitational wave chirp). I didn't see the growing emails about the signal until early that afternoon when I thought I should try clearing out my inbox before returning to work the following day. It definitely made going back to work that bit more exciting. However, all the work to get the analyses of this event checked has slightly eaten into my main job, which is to search for gravitational waves from pulsars.

1 Don't worry, gravity is very weak. The forces keeping your various constituent bits and bobs together are far more than enough to overcome any piddling gravitational wave that passes through you. Any displacement (stretching or squeezing) is only noticeable (if you have an exquisitely sensitive gravitational wave detector at least) between freely falling objects in the same local frame, i.e. if there are effectively no other external forces acting on the objects.
2 Note that another detector called Virgo is also due to start taking data later this year, but wasn't operational at the time, and that a smaller (and unfortunately less sensitive, but still important) detector called GEO600 was operational, but not observing when the event passed by.
3 Prior to this direct detection (some quibbles over the "directness" of detection can be found here) many gravitational waves have obviously continuously been impinging on the Earth and passing through us, but this is the first time we've had the technology to catch one in the act.
4 There are very good reasons why they've not been seen until now (basically boiling down to us not having been able to build sensitive enough detectors), but that hasn't made us any less impatient.
5 The signal was first "detected" about three minutes after it arrived by online analysis software that looked for generic transient (short-duration) coherent signals, i.e. blips in the data that appeared at the same time in both detectors and looked similar. The first reasonably detailed estimates of the source parameters (i.e. that is was two black holes merging) were with us within about a day. After a couple of days we release our estimate of the location of the source in the sky and released it to selected astronomy groups to point their telescopes at. Following that full and proper detailed studies of the signal, and very careful checks on the performance of the detectors, have taken many months of painstaking work and placed great strain6 on the collaboration. But, given the general inertia that you get within a large collaboration (which we've experienced releasing results that didn't contain any signals) we've actually turned around a finished detection paper (after 14 draft iterations), and twelve(!) companion papers in remarkably short time.
6 This is a hilarious gravitational wave pun.

Disclaimer: everything on this blog is my own personal opinion and any mistakes are my own.

Monday, March 24, 2014

GWPAW 2013: Impressions from India

In the latest issue of the LIGO Magazine I have a short article on my (relatively) recent trip to India to attend the Gravitational Wave Physics & Astronomy Workshop. Below I reproduce (a partially un-edited version of [apologies to the editors for reverting some of their changes here]) the article, with added links!
Family constraints have meant I’ve been off the conference circuit for a bit, so the 3rd Gravitational Wave Physics & Astronomy Workshop (GWPAW, formerly the Gravitational Wave Data Analysis Workshop, GWDAW, which ran on 14 occasions) seemed like a good opportunity to get back into the swing of conference attendance. Plus, its location at the Inter-University Centre for Astronomy & Astrophysics (IUCAA) in Pune, India presented the chance to visit a new country. Due to the location of the meeting, many of the other non-local attendees were able to experience a bit of India, including a group that organised a tour round Mumbai (and subsequent train journey to Pune), a couple who started their trip with a holiday in the backwaters of Kerala, and others visiting family or friends. While it would have been a great opportunity for me to see India, I was unable to bookend my trip with any site-seeing, so my experience of India outside of the confines of IUCAA mainly came from my taxi ride from Mumbai to Pune. The taxi ride itself was an interesting insight into travel in India - the first half of the approximately three and a half hour ride (it’s about a 170km journey) was just in leaving Mumbai, where the roads that are about as chaotic as they come. The system seems to be to spot a gap in the traffic, even if it looks too small for the mode of transport you are in, and then squeeze into it. Astonishingly this method (accompanied by liberal application of the horn) got us through the traffic unscathed. The freeway between Mumbai and Pune is apparently one of the best roads in India, and can supposedly offer great views as you climb up into the rocky hills, but a combination of jet lag and low clouds/smog meant that I couldn’t appreciate the trip/views fully (from the plane on my flight back from Pune to Mumbai I was able to see the views I'd previously missed). 
In Pune I stayed at the very pleasant Seasons Apartment Hotel, which as the name suggests offered large apartments with a lounge and kitchenette (and free bottled water, which is a must for travellers there). Not feeling very adventurous on my arrival I just opted for dinner at the hotel, but it was definitely worthwhile as the open air rooftop bar/restaurant offered great views of the city. The hotel was just about within walking distance of IUCAA, where the meeting was held (which I had briefly considered as a travel option), but the organisers had put on a taxi service to and from the hotel every day. On travelling to IUCAA I was thankful for this as negotiating the roads, many of which lacked pavements, may have proved daunting. IUCAA itself is situated on the Pune University campus, but is fairly self-contained with its own “housing colony” for guests, students and postdocs to stay. During the meeting we didn’t have to go far between talks in the Chandrasekhar auditorium, coffee breaks (which consisted of strong black tea really) breaks and meals. 
As well as our taxi service the organisers provided breakfast, lunch and dinner within IUCAA under a large marquee. The food was great, although you may have been hard-pressed if you didn’t like curry - not a problem for me though! Some of the dishes were pretty spicy, but I suspect they were they were probably still toned down from their usual standard heat levels. We also had freshly made roti cooked in a tandoor oven by the side of the marquee. 
Kathak dance recital
On the first evening we had entertainment put on in the form of a Kathak Dance Recital in the meeting auditorium. The singing and musical accompaniment was mesmerising. Afterwards Sathya presented the dancers and musicians with houseplants, which I can only assume is the standard thank-you gift.
And what about the science? The meeting was weighted towards compact binary coalescences (CBC) and electromagnetic follow-up, but that’s not surprising given that these are the most likely sources of the first advanced detector observations. In fact it was good to have a GWPAW where many of talks were about things that could be done in the near future, rather than having to look ahead decades, further cementing the idea that gravitational wave detections are on the horizon! A couple of standout talks were Parameswaran Ajith's overview of the status and prospects for modelling CBC waveforms and Jocelyn Read’s talk on the potential for measuring neutron star equations of state with advanced detectors. Most sessions had lively discussions following the talks, with one particular participant always ready to provide some vigorous questioning. 
The breaks and poster sessions in the grounds of the auditorium (which amongst other things contained a giant sundial and a set of swings connected as a coupled harmonic oscillator) were always buzzing with conversation, which for me yielded a potential future collaboration with an IUCAA postdoc. There were many interesting posters, but I particularly liked a couple: one was Chris Messenger’s describing a method to extract redshift information from neutron star mergers by observing modes of a potentially short-lived post-merger hyper-massive neutron star; and another was Shaon Ghosh’s on electromagnetic follow-up of CBC signals. During the meeting my own poster was upgraded to a talk (due to passport related issues for one of the invited speakers causing him to miss the meeting), so I had to quickly put together my own slides. 
The meeting turned out to be incredibly productive and fascinating, as well as welcoming and well-organised. The organisers and IUCAA staff were really friendly and helpful. It was a great chance for many Indian students and postdocs to attend the meeting and share their work, and for people from the LVC to interact with them. This was particularly useful because the distance means many collaborators in the USA and Europe got to discuss topics in person, and allowed us to develop these relationships in the run-up to LIGO India. This will be good for bringing through new local people into the field in the run up to LIGO India. There was a great deal of enthusiasm from the IUCAA director Ajit Kembhavi to keep up the efforts with the suggestion that IUCAA and other Indian institutions host summer school-type events in the future. The next GWPAW to look forward to will be in Osaka, Japan in June 2015, closely followed by Amaldi in South Korea. 
It’s a shame I didn’t get to experience more of the country, but I did I get to discover a taste for the Indian Coca-Cola equivalent, “Thums-Up”, while discussing exciting science halfway around the world.

Friday, March 21, 2014

Direct or indirect?

This week has seen the potentially momentous result from the BICEP2 experiment indicating the detection of gravitational waves from the inflationary era of the Universe, just a tiny fraction of a second after the Big Bang. It's a fantastic result, and if/when confirmed by other experiments (e.g., Planck) will be huge leap in developing our understanding of the beginnings of the Universe. Many other people have discussed the background (that's just a scattering of a few of the many links to some scientific and more general descriptions of the results) and potential implications of the results, and a few areas for some considered scepticism, but I wanted to briefly talk about whether this classes as a direct or indirect detection of gravitational waves. I'm mainly interested in this because, to be clear up front, I'm part of a large scientific collaboration (the LIGO Scientific Collaboration [LSC]) that is currently trying for direct gravitational wave detection using a set of specially designed detectors/observatories (LIGO, Virgo and GEO600) here on Earth. I should also point out the views I'm giving are entirely my own and definitely not those of the LSC.

I should note that on BICEP2's FAQ the word "direct" gets used in the answer to the question "Have you detected a gravitational wave?" to which they answer "The frequency of the cosmic gravitational waves is very low, so we are not able to follow the temporal modulation. However, we are indeed directly observing a snapshot of gravitational waves through their imprints on matter and radiation over space." Whether this fits into my description of direct or indirect below is another question!

What do I mean by indirect or direct detection? Well in 1993 Hulse and Taylor won the Nobel Prize in Physics for their earlier observation of a pulsar in a neutron star binary system, which was losing energy exactly as predicted through the emission of gravitational waves. This has always been said to be an indirect detection of gravitational waves, i.e., it wasn't physically measuring the waves themselves, but was inferring their presence through the energy they carry away as observed by the binary system's evolution (since their original observations this effect has been measured in many other binary neutron star systems, which also provide other tests of general relativity). With the gravitational wave detectors (such as the aforementioned LIGO, Virgo and GEO600) they aim to directly detect the waves by actually seeing their effect in stretching and squeezing the distance between parts of the detectors. So, the former uses some observations to measure the properties of a source (the orbital evolution of a binary system) and from that infer the presence of gravitational waves, whilst the later directly measures their effect within a detector system. [On a slight aside there could be much discussion on the semantics of "direct" observation/detection - in pretty much all observations (including a persons senses) you could say that you're variously removed/abstracted by a number stages from directly measuring/experiencing the effect of something. In scientific observations it's pretty much always the case that you're having to use proxies to convey some information to you. In most astronomy photons are counted by a CCD, processed by a computer and then displayed, whilst in particle physics you're often measuring the decay of one particle through the products it produces, which themselves are relayed to you through tracks left on silicon detectors, or energy deposited in calorimeters. However, in most cases using "direct" observation/detection is probably a fair term.] 

So, in the case of the BICEP2 results, where they're measured the imprint of gravitational waves in the cosmic microwave background (CMB), where does that fit on the scale (if there is some scale in between!) of direct or indirect detection? Initially I was biased against calling this a direct detection. As mentioned above this is mainly due to working as part of a collaboration hoping to soon directly detect gravitational waves with ground-based detectors. I (not wanting to speak for the rest of the collaboration) would like us to be the first to claim a direct detection, so there's a level of guardianship (or unjustified feeling of ownership!) over that claim. However, I think (obviously I'm not the sole arbiter) the CMB measurements deserve the right to be called more than an indirect detection, so for now I'll go with the compromise of semi-direct detection (as used by Andrew Jaffe here).

So, why not indirect? Well, the gravitational waves that are observed in the CMB have (redshifted) frequencies of order 10-17 Hz, which corresponds to wavelengths of ~1 Gigaparsec. To measure such waves you'd need a detector about the size of the Universe. There's obviously no way you could build a physical detector to measure that, so using the CMB's the only way to do it - it is the only "detector" you could have available. In this sense they don't seem to fit with the indirect pulsar binary system paradigm above. [Note that there are also efforts to measure gravitational waves with frequencies around 10-9 Hz using astrophysical objects (in this case pulsars) as the components of a "detector".]

But, why only semi-direct then? This is maybe a technicality that could be argued over, but I suppose it comes down to the basic fact that despite the CMB being the only way to perform the measurement of ultra-low frequency waves you still aren't physically measuring the wave in a detector on Earth (another example might be dark matter, who's effects are imprinted in various astronomical observations, but you still want to see them in a detector on Earth to claim detection). You're also having to use the effect of the gravitational waves on density perturbations, which in turn affect the light intensity, which then affects the CMB polarisation signal received; in a laser interferometric detector the gravitational wave affects the position of mirrors, which in turn effect the phase of reflected and detected light, which you could argue (an I may be pushing it here) is a step less removed than the case with the CMB. There's also the case (which may not be entirely relevant in a direct/indirect argument) that given that the CMB polarisation signal (by the very nature of how it had to be formed during a short period in recombination when photons could diffuse far enough that they would encounter different temperature regions, but that there were still enough free electrons to scatter off and give a polarisation signal) was imprinted within a short space of time, it is just a single snapshot of the gravitational wave signal. Gravitational wave detectors on the other hand (including those using pulsars) are able to measure the variations as the waves pass them, so give a complete time series of the signal. My hand wavy analogy (also implied on the BICEP2 FAQ) is that the CMB measurement is like seeing a photograph of the shadows of water waves on a ripple tank, whereas gravitational wave detectors are like continuously measuring the position of a cork floating on top of the tank.
Shadows of waves on a ripple tank. Analogous to the imprints of gravitational waves in the CMB polarisation? [Credit]
Whether the BICEP2 result is indirect, direct or semi-direct detection of gravitational waves it doesn't take away from the fantastic work they've done and it's still an amazing feat of observation and analysis.

Anyway, that's my view. What do you think?

Thursday, January 30, 2014

The origin of carbon

Last summer I was asked to write an article on the origin of carbon for The Geographer, which is the quarterly newsletter of the Royal Scottish Geographical Society. The original article can be found here (see page 8), but I've been given permission to reproduce it here (any comments/corrections are welcome):

Carbon is the fourth most abundant element in the Universe (after hydrogen, helium and oxygen) and is the sixth lightest element. To understand it's origins and relative abundance we first have to go back to the origin of the Universe itself.

By the mid-20th Century Edwin Hubble's observations of an expanding Universe suggested that it had started out from an extremely dense and hot initial state: a "cosmic fireball" produced by the Big Bang. However, a question for the Big Bang model was how it produced the known elements in their currently observed abundances (called Big Bang nucleosynthesis). In 1948 a PhD student called Ralph Alpher, working with the renowned physicist George Gamow, published a paper called "The Origin of Chemical Elements" claiming to solve this problem. But, the title slightly overstated the outcome of their work. It was ground-breaking and correctly predicted that in this "comsic fireball" the three lightest elements (hydrogen, helium and lithium) would be made in the abundances that are observed today. However, their work couldn't produce any heavier elements and it was in fact the problem of making carbon that was the stumbling block. The basic process of forming elements is that you take nucleons (protons and neutrons) and fuse them together to create heavier atomic nuclei. You can then fuse further nucleons, or atomic nuclei, together to produce heavier and heavier elements. This is complicated by several facts: the rates that fusion reactions take place can differ enormously for different nuclei; the rates depend very strongly on temperature and density; and, certain nuclei are unstable to radioactive decay and are very short-lived. To create carbon you require six protons and six neutrons, so it can be made by fusing two helium nuclei (two protons and two neutrons) to give a beryllium nucleus and then sticking on another helium nucleus to give carbon. However, Alpher and Gamow found that because the beryllium nuclei only has a lifetime of ~10-16 seconds there wasn't enough time during the hot and dense early stages of the Universe for it to fuse with another helium nucleus and produce carbon. They were therefore left with a Universe containing only the three lightest elements, which was contrary to all observational evidence!

This problem with Big Bang nucleosynthesis was jumped upon by opponents of the Big Bang as a failure of the model. One such person was Sir Fred Hoyle, a forthright theoretical astrophysicist at Cambridge, who, along with others, put forward Steady State models of the Universe (i.e. an infinite Universe with no beginning). However, his models still required that there was some way that elements could be produced, so the problem of creating carbon from lighter nuclei still needed to be solved. In the calculations for trying to fuse three helium nuclei (called the triple alpha process, since helium nuclei are also known as alpha particles) he still found that only insignificant amounts of normal carbon could not be produced during the short life of beryllium, but the production rate would dramatically increase if carbon nuclei were created in an "excited" state i.e. a nucleus with additional potential energy in it. There was no theoretical reason why such an "excited" state should exist (in fact it is still unknown [sorry for the non-open access article link] why this state exists!), but Hoyle argued that because we exist and we require carbon for our existence, then if this is the only way significant amounts of carbon can be produced then this state must be possible. His calculations gave him a precise number for the amount of energy in this state, but he had to convince someone to run an experiment to see if it was true. While visiting the California Institute of Technology in 1953 he persuaded the nuclear experimental groups led by Willy Fowler and Ward Whaling to look for this excited state and soon after it was confirmed that it did indeed exist1.

This didn't mean that Big Bang nucleosynthesis could now produce carbon and the heavier elements as the process was still far too slow given the expansion of the Universe, but there were other environments where it could take place - the cores of massive stars. Hoyle and Fowler, along with the married couple of Margaret and Geoffrey Burbidge, were able to show how all the elements from beryllium up to iron were synthesised in the cores of stars (called stellar nucleosynthesis). In these massive stellar cores there is a high enough temperature and density of helium nuclei so that even though the beryllium produced from fusing two helium nuclei is extremely short-lived there is enough of it that some will fuse with another helium nuclei to form the excited state of carbon. Since carbon was required as the starting point for production of all the heavier elements this allows the large variety we see today. The deaths of these massive stars in supernova explosions has since seeded the Universe we the huge quantities of carbon we see today.

The evidence now shows that the lightest elements were indeed produced during the Big Bang and the Universe has had enough time to produce all other elements (including Carbon) in their observed abundances, via processing in stars.

1A more detailed account of this and the many other people actually involved in the work can be found in H. Kragh, (2010) When is a prediction anthropic? Fred Hoyle and the 7.65 MeV carbon resonance.

Tuesday, October 01, 2013

How high are pulsar "mountains"?

Just a quick post to highlight a paper that I (and others in the LIGO Scientific Collaboration and Virgo Collaboration, and a selection of radio, X-ray and gamma-ray pulsar astronomers) have been working on recently. The paper gives the most recent results from the search for gravitational waves from pulsars using data from the LIGO and Virgo gravitational wave detectors. A summary of the results from this search can be found here, but I also reproduce it below (see the link for the result plots from the paper):
Einstein's General Theory of Relativity predicts that the motion of masses can lead to the emission of gravitational radiation, commonly called gravitational waves. These waves, which are distortions in the fabric of space-time, ripple out from their sources at the speed of light. Far away from the source their effect is tiny. The distortions from even the strongest sources (which are some of the most violent events in the Universe) stretch and squeeze the distance between any objects they pass by a fractional amount (called the strain) of order 10-23. That is equivalent to a change in distance between the Earth and the Sun of just a few times an atomic radius! However, scientists have built detectors, based on laser interferometry, to perform very high precision distance measurements that are capable of measuring these extremely small distortions. In the US there are two such detectors called the Laser Interferometer Gravitational-wave Observatory (LIGO), in Italy there is the Virgo detector and in Germany there is the GEO600 detector. These are operated, and their data analyzed, by hundreds of scientists from across the world as part of the LIGO Scientific Collaboration and Virgo Collaboration.

An artist's impression of a pulsar. Image credit: Michael Kramer (JBCA, Unversity of Manchester).
An artists impression of a pulsar
One of the ways we are taking advantage of the fantastic sensitivity of these detectors is to search for continuous gravitational waves from pulsars. Pulsars were first observed in 1967 at the University of Cambridge by the radio astronomers Jocelyn Bell and Antony Hewish. They are neutron stars, which are the collapsed cores of massive stars that have run out of fuel and gone supernova (up until this discovery they had just been theoretical objects first proposed by Walter Baade and Fritz Zwicky in 1934). They are very rapidly spinning, with rotation periods ranging from a few seconds to a few milliseconds, so their surfaces are rotating at up to ∼10% of the speed of light! With a mass of slightly more than the Sun (∼2.8×1030 kg) packed into a sphere of radius ∼10 km, they are about 40 000 billion times denser than lead (this is equivalent to squashing the entire population of the Earth into a thimble). They also have magnetic fields a billion to a few thousand billion times that of the Earth. So, these are very extreme objects! The pulsed emission comes from beams of radiation emanating from the magnetic poles of the stars acting like a lighthouse. If the magnetic and rotation axes are not aligned then pulses are observed as the radiation beam sweeps across the Earth once per rotation.

To generate gravitational waves a pulsar must have some non-symmetric distortion that is not along its rotation axis, i.e. a "mountain". This distortion could have been: frozen into the crust or core of the star after it was born in the supernova; formed from material falling onto the star; or, be produced and maintained though extremely large internal magnetic fields (larger even than the external fields described above). However, due to the huge gravitational field at the star's surface the material forming the "mountain" needs to be really strong to not be flattened out (a mountain on Earth made of jello would not get very big before collapsing under its own weight, but one made of solid rock can become as large as, or larger than, Everest). For a pulsar with a crust made up of normal neutron star material the maximum deformation that could be sustained before collapsing is about 10 cm, so not very high for a "mountain" (scaling up in height only this would be equivalent to a ∼50 m hill on Earth). If the star was made up from more exotic materials, e.g. if it were a solid quark star, then it could possibly sustain a "mountain" up to ∼10 m in height. The "mountain" size can also be expressed in terms of the star's ellipticity (ε), which is a measure of its size as a fraction of the star's radius.

Making a few reasonable assumptions we can estimate the maximum amplitude of gravitational waves being emitted by most pulsars. To do this we use the law of conservation of energy. Pulsars are seen to slow down (spin-down) over time. This spin-down takes a very long time, and even the most rapidly spinning-down objects only decrease in frequency by less than a hundredth of a Hertz (or equivalently, increase their periods by less than ten microseconds) over a year. But, given the huge moment of inertia of the stars this still represents a very large loss in rotational energy, corresponding to a power of ∼1031 Watts, or well over ten thousand times the Sun's luminosity. If we assume that all of this energy is being lost by emission of gravitational waves we can calculate the amplitude with which we would observe them at Earth. This is called the "spin-down limit". If we can achieve detector sensitivities that allow searches to reach below this limit then we are probing interesting new territory, where gravitational wave signals could be detectable.

There are just over 350 pulsars (see the Australia Telescope National Facility catalog) spinning fast enough for their gravitational wave emission to be in the sensitive frequency band of the current detectors (∼20 to 2000 Hz). We have searched for a total of 195 of these pulsars using data from the LIGO, Virgo and GEO600 science runs, with the most up-to-date results for 179 of them coming from the most recent LIGO S6 and Virgo VSR2 and VSR4 runs. To help reach the best sensitivity we have used information about these pulsars obtained through radio, X-ray and gamma-ray observations; these have provided very precise knowledge of the pulsars' frequencies, positions and how their frequencies change over time. This information has allowed us to accurately track any potential signal in our data over the whole length of the science run (called coherent integration).

From these searches we were not able to detect evidence for gravitational radiation from any of the pulsars. But, we have produced the most sensitive upper limits yet, and for seven pulsars we are starting to probe an interesting regime within a factor of five of the spin-down limit. For the Crab pulsar and Vela pulsar we have surpassed the spin-down limit. From this we can say that, respectively, less than ∼1% and 10% of their spin-down energy loss is due to gravitational radiation. We can also say that there are no "mountains" on the Crab pulsar greater than ∼1 meter, and none on Vela greater than ∼10 meters. Among the other pulsars, we found eight more within a factor of ten of the spin-down limit. From the gravitational wave observations alone we can limit the "mountain" size for some of these to less than ∼1 mm, although the spin-down limit is more stringent for those pulsars.

When the current upgrades to the LIGO and Virgo detectors are complete we expect to be able to beat the spin-down limit for many more pulsars. This includes pulsars where we could limit the maximum mountain size to less than a few tenths of a millimeter! It also means we will be in a regime where we can make the first direct detections of gravitational waves from pulsars.

Monday, June 10, 2013

Consider Phlebas

Phlebas the Phoenician, a fortnight dead,
Forgot the cry of gulls, and the deep sea swell
And the profit and loss.
                                   A current under sea
Picked his bones in whispers. As he rose and fell
He passed the stages of his age and youth
Entering the whirlpool.
                                 Gentile or Jew
O you who turn the wheel and look to windward,
Consider Phlebas, who was once handsome and tall as you.

from The Waste Land, T. S. Eliot

I've been reading less than I used to over the last few years, but despite that whenever there's been a new Iain M. Banks book out I've been quick to get it. It just so happened that when I heard the news earlier this year that Banks was suffering from terminal cancer I was reading his latest Culture offering, The Hydrogen Sonata. And now he's died.

Banks has been one of my favourite authors in both his science-fiction guise and mainstream fiction. My formative sci-fi education as a teenager was pretty much all from reading my dad's Clarke and Asimov books. That was until I came across Banks' first sci-fi book Consider Phlebas. It opened up a more gritty, adult and far more richly charactered world than I'd previously enjoyed. His Culture universe was such a fantastic setting that I was quick to read his other available novels and eagerly anticipated each new release (Culture and non-Culture). Back then my book collection was limited, so I re-read some of his earlier novel several times (The Player of Games was my favourite book for many years and still remains one of my top recommendation), always getting more out of them and enjoying meeting and re-meeting the always excellent Culture Minds and Ships. Indeed the non-human(oid) (non-biological) ships and drones were always a huge draw of the books.

I have Banks to thank for opening me up to a whole new range of modern sci-fi and fiction in general (I think Complicity may have been my first non-sci-fi novel that I'd read other than books I was made to read for school work, and The Crow Road amazed me that I could be so drawn into a book about a Scottish family). I'm lucky that I haven't exhausted reading all his works and can still enjoy seeing what else he has to offer. I'd recommend anyone start reading his works and if you've never read any sci-fi before you'd do far worse than to start with some of his - try the short story collection The State of the Art for a dabble.

Tuesday, August 14, 2012

Munro bagger

There are 283 Munros in Scotland (mountains over 3000 ft or 914.4 m) and in my almost 10 years living here you might have thought I'd have made it up at least one by now. But, it actually took until two weeks ago for me to "bag" my first one. However, I thought I'd tackle the biggest one first, so can now tick Ben Nevis off my list. As with all the rivers I've kayaked on I'll post up any new ones I climb and hopefully there won't be another 10 year wait.

There was a small group of us making the climb together, so we made a bit of a Fort William weekend of it by heading up on Friday evening (just making it in time to see most of the Olympic opening ceremony), climbing of Saturday and leaving on Sunday. We stayed at a very nice and new B&B called MacLean House.

On the day of the climb we started with a good breakfast before driving the short way to the car park at the base of the mountain. As well as being the highest of the Munros the Ben Nevis climb also starts from close to sea level meaning you do have to scale the whole height. The weather hadn't promised to be very good, so we just headed up the main route rather than tackling anything more challenging. The ascent was interrupted by showers of varying length with occasional breaks of sunshine that sometimes lasted long enough to dry you off. The showers got noticeably colder as we climbed though. Near the summit there was a lovely break in the clouds, but on reaching the peak the ice cold rain returned and the wind picked up. We got our photo taken, but didn't hang about long!

Soon after starting the decent we found a slightly sheltered stone circle in which to have our lunch. We then attempted to get down as quick as possible. This took its toll on my legs and hips, with the bottom third (after passing the lochan) of uneven rocks being particularly tough. In all we made good time with the doing the climb in about 7 hours.

That evening we dragged ourselves on our aching legs for dinner that the Crannog seafood restaurant. The food was great, but tired I wasn't able to make a big night of it as tiredness over took me.

It feels good to have achieved my first Munro climb and I hope to tackle more in the future, but I nay not take on Ben Nevis again.